
Key derivation function: an essential (and usually
transparent) component of real-world applications

Prof. Andrea VISCONTI

Department of Computer Science
Università degli Studi di Milano

andrea.visconti@unimi.it September 25th, 2019 1 / 37

Introduction

Hash Functions

Properties...
1. Collision-free

Nobody is able to find two strings x and y s.t. x 6= y and H(x) = H(y)

andrea.visconti@unimi.it September 25th, 2019 2 / 37

Introduction

Hash Functions

Collision do exist!
Indeed,

we input any string of any size — say n, this means 2n;
we provide a fixed size output — for example x bits, this means 2x ;

But are you able to find them?

andrea.visconti@unimi.it September 25th, 2019 3 / 37

Introduction

Hash Functions

Properties...
2. Preimage resistant

Given H(x), it is computationally infeasible to find x .

andrea.visconti@unimi.it September 25th, 2019 4 / 37

Introduction

Hash Functions

Properties...
3. Second preimage resistant

Given x , it is computationally infeasible to find y s.t. H(x) = H(y).

These three properties ensure that it is hard to cheat.

andrea.visconti@unimi.it September 25th, 2019 5 / 37

Introduction

SHA-1... wiki

andrea.visconti@unimi.it September 25th, 2019 6 / 37

Introduction

Problem Description

Passwords are widely used to protect secret data or to gain access to
specific resources.

They should be strong enough to prevent well-know attacks (e.g.
dictionary and brute force attacks).

User-chosen passwords are generally short and lack enough entropy.

They cannot be directly used as a key to implement secure
cryptographic systems.

andrea.visconti@unimi.it September 25th, 2019 7 / 37

Introduction

Problem Description

Passwords –> HASH(passwords) –> KDF(passwords).

CPU-intensive

Memory-intensive

andrea.visconti@unimi.it September 25th, 2019 8 / 37

Introduction

A possible solution

A possible solution to these issues is to adopt a Key Derivation Function
(KDF).

Why are Password-Based Key Derivation Functions of particular
interest in cryptography?
Because they

input a password/passphrase and derive a cryptographic key;
allow to increase the size of this key;
introduce CPU-intensive (or memory) operations;
allow legitimate users to spend a moderate amount of time on key
derivation;
slow down brute force and dictionary attacks as much as possible.

andrea.visconti@unimi.it September 25th, 2019 9 / 37

Introduction

PBKDF2

In PKCS#5, RSA Laboratories described Password-Based Key
Derivation Function version 2 (PBKDF2).

PBKDF2 is one of the most widely used KDF in real applications.

(Wiki...) PBKDF2 is implemented in many systems:
Wi-Fi Protected Access security protocols (i.e., WPA and WPA2);

Firefox Sync;

iOS passcodes;

Android full disk encryption (since version 3.0 to 4.3);

FileVault encryption on Mac;

Linux Unified Key Setup (LUKS) disk encryption specification;

WinZip encryption;

GRUB2 boot loader;

...

andrea.visconti@unimi.it September 25th, 2019 10 / 37

How does PBKDF2 work?

How does PBKDF2 work?

PBKDF2 inputs
a user password/passphrase p;
a random salt s;
an iteration counter c ;
derived key length dkLen.

PBKDF2 outputs a derived key DK :

DK = PBKDF2(p, s, c , dkLen)

PBKDF2 can derive keys of arbitrary length.

andrea.visconti@unimi.it September 25th, 2019 11 / 37

How does PBKDF2 work?

How does PBKDF2 work?

The underlying pseudo-random function is HMAC-SHA-1 by default.

Salt: To prevent building universal dictionaries.

Iterations count: defined a priori or at runtime.

In order to slow down the attackers, PBKDF2 introduces CPU-intensive
operations based on an iterated Pseudo-Random Function (PRF).

As suggested in SP 800-132 (December 2010), it is a good practice to
select the iteration count as large as possible, as long the time
required to generate the key is acceptable for the user.

andrea.visconti@unimi.it September 25th, 2019 12 / 37

How does PBKDF2 work?

How does PBKDF2 work?

More precisely, PBKDF2 generates as many blocks Ti as needed to cover
the desired key length dkLen.

The length of each block Ti is bounded by hLen, which is the length of
the underlying PRF output (e.g. 160 bits (SHA-1), 256 bits (SHA-256),
and so on).

DK = T1||T2|| . . . ||TddkLen/hLene

Each block Ti is computed iterating the PRF many times as specified
by an iteration count c .

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc

andrea.visconti@unimi.it September 25th, 2019 13 / 37

How does PBKDF2 work?

How does PBKDF2 work?

Now we can compute the Pseudo-Random Function (PRF):

U1 = PRF (p, s||i)

U2 = PRF (p,U1)

U3 = PRF (p,U2)

...

Uc = PRF (p,Uc−1)

Recall that iteration count c is used to slow down an attacker as much
as possible.

andrea.visconti@unimi.it September 25th, 2019 14 / 37

How does PBKDF2 work?

How does PBKDF2 work?

DK = PBKDF2(p, s, c , dkLen)

More precisely, the derived key is computed as follows:

DK = T1||T2|| . . . ||TddkLen/hLene

Each single block Ti is computed as

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc

where
U1 = PRF (p, s||i)

U2 = PRF (p,U1)

...

Uc = PRF (p,Uc−1)

andrea.visconti@unimi.it September 25th, 2019 15 / 37

How does PBKDF2 work?

About PRF: usually HMAC

HMAC can be defined as follows:

HMAC = H(K ⊕ opad ,H(K ⊕ ipad , text))

and it can be graphically represented as

andrea.visconti@unimi.it September 25th, 2019 16 / 37

How does PBKDF2 work?

About PRF: usually HMAC (2)

andrea.visconti@unimi.it September 25th, 2019 17 / 37

Weaknesses

Weaknesses

RFC 2104 (Feb 1997): IMPLEMENTATION NOTE

HMAC is defined . . . However, if desired, a performance improvement
can be achieved at the cost of (possibly) modifying the code . . .
The idea is that the intermediate results of the compression function on the
B-byte blocks (K ⊕ ipad) and (K ⊕ opad) can be precomputed only once
at the time of generation of the key K, or before its first use. These
intermediate results are stored and then used to initialize the IV of H each
time that a message needs to be authenticated.
This method saves, for each authenticated message, the application of the
compression function of H on two B-byte blocks (i.e., on (K ⊕ ipad) and
(K ⊕ opad)).
Such a savings may be significant when ... Choosing to implement
HMAC in the above way is a decision of the local implementation and has
no effect on inter-operability.

andrea.visconti@unimi.it September 25th, 2019 18 / 37

Weaknesses

FIPS 198 (March 2002), FIPS 198-1 (July 2008)

IMPLEMENTATION NOTE:
The HMAC algorithm is . . . Conceptually, the intermediate results of the
compression function on the B-byte blocks (K ⊕ ipad) and (K ⊕ opad) can
be precomputed once, at the time of generation of the key K, or before its
first use. These intermediate results can be stored and then used to
initialize H each time that a message needs to be authenticated using the
same key.
For each authenticated message using the key K, this method saves the
application of the hash function of H on two B-byte blocks (i.e., on
(K ⊕ ipad) and (K ⊕ opad)).
This saving may be significant when ...

This means that RFC 2104 and FIPS 198 suggest us a way to avoid
50% of PBKDF2’s CPU intensive operations, by replacing them with
precomputed values.

andrea.visconti@unimi.it September 25th, 2019 19 / 37

Weaknesses

FIRST: Precomputing a message block

andrea.visconti@unimi.it September 25th, 2019 20 / 37

Weaknesses

SECOND: Precomputing a word-expansion

A minor weakness provides the possibility to precompute the
word-expansion part of the second message block of a keyed hash function
(green rectangle). Indeed, such a block is password-independent, and
given a salt s (recall that s is a public information) an attacker is able to
compute the expansion W0 . . .W79 in advance.

andrea.visconti@unimi.it September 25th, 2019 21 / 37

Weaknesses

THIRD: Useless XOR operations

The constant 0x36 and 0x5c are used to pad the first message block up to
the hash block size (green and orange rectangles). This means that a
number of Wt are set to the same value.

Wt = ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) t ∈ [16 . . . 79]

andrea.visconti@unimi.it September 25th, 2019 22 / 37

Weaknesses

THIRD: Useless XOR operations (2)

It is easy to observe that each SHA-1 message block has a run of several
consecutive zeros (i.e., a number of Wt = 0).

Wt = ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) t ∈ [16 . . . 79]

andrea.visconti@unimi.it September 25th, 2019 23 / 37

Weaknesses

FOURTH: Useless XOR operations

andrea.visconti@unimi.it September 25th, 2019 24 / 37

Weaknesses

FOURTH: Useless XOR operations

In 2016 [?], we show that eighty words Wi can be also represented as:

Wi =

ROTL1(W [i − 3]⊕W [i − 8]⊕W [i − 14]⊕W [i − 16]) i ∈ [16 . . . 31]
ROTL2(W [i − 6]⊕W [i − 16]⊕W [i − 28]⊕W [i − 32]) i ∈ [32 . . . 63]
ROTL4(W [i − 12]⊕W [i − 32]⊕W [i − 56]⊕W [i − 64]) i ∈ [64 . . . 79]

Using the new message scheduling function, the number of useless XOR
operations is increased from 27 to 61 (out of 192).

w [70] = ROTL1(w [67]⊕ w [62]⊕ w [56]⊕ w [54])

w [70] = ROTL4(w [58]⊕ w [38]⊕ w [14]⊕ w [6])

= ROTL4(w [58]⊕ w [38]⊕ 0⊕ 0)

andrea.visconti@unimi.it September 25th, 2019 25 / 37

Weaknesses

FOURTH: Useless XOR operations

andrea.visconti@unimi.it September 25th, 2019 26 / 37

Weaknesses

Optimizations

[OPT–01] Early exit:

Assuming that we require a 256-bit derived key, two SHA-1 fingerprint are
necessary — i.e., DerKey = T1||T2, with T1 and T2 160-bit length each.

Since blocks Ti are independent of each other, firstly we generate a block
T1 and then we compute the second if and only if T1 is equal to the first
part of the 256-bit derived key.
If not so, the chosen password p is certainly wrong.

andrea.visconti@unimi.it September 25th, 2019 27 / 37

Weaknesses

Optimizations (2)

[OPT–02] Block reduction:

To precompute the first message block of a keyed hash function (green and
orange rectangle) and reuse such a value in all the subsequent HMAC
invocations reduces the number of blocks that have to be computed from
“4 ∗ iteration count” to “2+ 2 ∗ iteration count”.

andrea.visconti@unimi.it September 25th, 2019 28 / 37

Weaknesses

Optimizations (3)

[OPT–03] Input size:

A generic HMAC implementation has to address the problems of the size of
password p and message text. In PBKDF2, excluding the computation of
U1, we have not a generic HMAC implementation but a specific one. We
known in advance the computation of the first message block (i.e.
[OPT–02]), and we have to manage only the second one.

Since the second message block always inputs a 160-bit message, namely
SHA-1(M), we avoid length checks and the chunk splitting operations
during the computation of U2,. . . ,Uc , thus reducing the overhead
necessary to compute an HMAC implementation.

andrea.visconti@unimi.it September 25th, 2019 29 / 37

Weaknesses

Optimizations (3)

andrea.visconti@unimi.it September 25th, 2019 30 / 37

Weaknesses

Optimizations (4)

[OPT–04] Useless XOR operations:

Wi =

ROTL1(W [i − 3]⊕W [i − 8]⊕W [i − 14]⊕W [i − 16]) i ∈ [16 . . . 31]
ROTL2(W [i − 6]⊕W [i − 16]⊕W [i − 28]⊕W [i − 32]) i ∈ [32 . . . 63]
ROTL4(W [i − 12]⊕W [i − 32]⊕W [i − 56]⊕W [i − 64]) i ∈ [64 . . . 79]

Exploiting the previous Equations, we can avoid 61 out of 192 XOR
operations.

andrea.visconti@unimi.it September 25th, 2019 31 / 37

Weaknesses

Optimizations (5)

[OPT–05] Three-round optimization

In the first round we have to compute the following equation:
f0 + E + ROTL(A, 5) +W0 + K0.

We can precompute f0 + E + ROTL(A, 5) + K0 = 0x9FB498B3 and
reduce the first round to a single operation, thus saving 3 operations out of
4. This approach can be also applied to second and third round.

andrea.visconti@unimi.it September 25th, 2019 32 / 37

Weaknesses

GPU performances

andrea.visconti@unimi.it September 25th, 2019 33 / 37

Weaknesses

CPU performances (AMD 8 cores, 4GHz)

andrea.visconti@unimi.it September 25th, 2019 34 / 37

Alternative approaches

Alternative approaches

Password Hashing Competition (PHC) and KDFs

PBKDF2 (standard de facto)
Argon
Lyra
Makwa
Catena
Yescrypt
...

andrea.visconti@unimi.it September 25th, 2019 35 / 37

Alternative approaches

Alternative approaches

They are based on...
Hash functions
HMAC
AES-XTS
Sponge functions
LFSR
...

andrea.visconti@unimi.it September 25th, 2019 36 / 37

Thank you for your attention!

andrea.visconti@unimi.it September 25th, 2019 37 / 37

	Introduction
	How does PBKDF2 work?
	Weaknesses
	Alternative approaches
	

